| 1. | Given the function f (x) = 5x + 4, find f (2m). 
 Solution: Substitute 2m into the function in place of x.        f (2m) = 5(2m) + 4 = 10m + 4.
 Using parentheses will avoid problems.
 Notice that the answer is an algebraic expression, not a numeric value.
 
 | 
                   
                     | 2. | 
                       Given f (x) = 3x2 + 2x - 3, find f (2a - 5).
                       
 Solution:  Parentheses are a MUST is this problem!
 Be careful - more algebra work is needed here.
 f (2a - 5) = 3(2a - 5)2 + 2(2a - 5) - 3
 = 3(4a2 - 20a + 25) + 4a  - 10 - 3
 = 12a2 - 60a + 75 + 4a - 10 - 3
 = 
    12a2 - 56a + 62
 | 
                   
                     | 3. | Given g  (a ) = 9 - a2  and h (a ) =  a  - 3, express:
                        
                           Solution:
                             | a) g (a) + h (a) | b) g (a) - h (a) |  
                             | c) g (a) • h (a) | d)  , g(a) ≠ 0 |  
                         
                           | a) g (a) + h (a) = (9 - a2) + (a - 3) = -a2 + a + 6
 | b) g (a) - h (a) = (9 - a2) - (a - 3) = -a2 - a + 12
 |  
                           | c) g (a) • h (a) = (9 -  a2) • (a - 3) = -a3 + 3a2 + 9a - 27
 | d)  a ≠ 3; a ≠ -3
 |  | 
                   
                     | 4. | 
                       Given   , express   .
                       
                       
                       Solution: Warm up your algebraic fraction skills! 
   | 
                   
                     | 5. | Given f (x) = x2 - x - 4. Find f (x + h).
 Solution: Be careful to replace the x with (x + h). Use parentheses!!!!
 
 
                       
                         | (x+h)2 - (x+h) - 4x2 + 2xh + h2 - x - h - 4
 
 |  |  | 
                   
                     | 6. | Given g(x) = x2 + 1 and h(x) = 5 - x.  Express 3•g(5 - x) - 2•h(x2)
                         
 Solution: Remember to use parentheses!
 3g(5 - x) - 2h(x2) = 3((5 - x)2 + 1) - 2(5 - x2) = 3(x2 - 10x + 25 + 1) - 2(5 - x2)
 = 3x2 - 30x + 78 - 10 + 2x2 = 5x2 - 30x + 68
 | 
                   
                     | 7. |  Solution: FYI: This new expression is called the "difference quotient" or  average rate of change.
 

 
 |